Volume 71 No.2(Special Issue)(Open Access) - 2025-06-30

(General Paper)【Issue/ Practice Critical Review】Envisioning Science Education: The Development of Action Competence and the Cultivation of Agency

(一般論文)【議題/實務評論】展望科學教育:行動能力的發展與能動性的培養

Author:
Shih-Yeh Chen, Shiang-Yao Liu / 陳仕燁、劉湘瑤
Keyword:
action competence, socio-scientific issue, scientific literacy, agency, transformation / 行動能力、社會性科學議題、科學素養、能動性、變革
  • Summary
  • Chinese Summary
  • Reference
  • Scholarly references
(1)Purpose: Science has transformed the course of human civilization, and science education plays a crucial role in conveying the process of scientific learning. Movements such as STS, STSE, and STEM have emerged as integral components of science education. Over the past two decades, teaching scientific knowledge and addressing socioscientific issues have become essential practices in science classrooms. However, these approaches remain subjects of debate within the science education community. In particular, when facing global socio-ecological crises and highly uncertain problems, merely expressing concern or presenting arguments in the classroom does little to solve real-world issues. The recognition of existing issues and the implementation of concrete actions to address them are pivotal in driving transformative influences on societal structures, thereby embodying the notion of agency central to new generation scientific literacy. Accordingly, this study analyzes the revised PISA framework, explores various interpretations of agency within science education, and reviews relevant literature to formulate educational practices that align with the principles of new-generation scientific literacy.(2)Main Theories or Conceptual Frameworks: Since the implementation of Taiwan’s new curriculum guidelines in 2019, lifelong learning has been an emphasis on social participation. Science education, in this context, aims to equip individuals with the abilities to address science-related problems through personal action and collaboration with others. The conceptual framework is rooted in the educational philosophy of Bildung developed in late 18th century Europe and the action competence approaches introduced by Danish scholars in the late 20th century, which emphasize understanding the root causes and impacts of issues. It advocates for the formulation of action strategies, articulation of visions, and cultivation of collective commitments to achieve social transformation through incremental actions.(3)Research Design/Methods/Participants: This article reviews key theoretical and empirical research to conceptualize the new-generation scientific literacy grounded in the Bildung and the action competence approaches and to concretize the role of agency in scientific literacy within the PISA framework.(4)Research Findings or Conclusions: OECD released the PISA 2025 science framework, which introduced significant changes. Along with existing scientific competencies, a third competency– Research, evaluate and use scientific information for decision making and action– has been added to emphasize the ability to act upon assessed information. This framework also placed increased emphasis on environmental science competencies, not only in response to the SDGs but also aligning with the “Education and Skills 2030” project, which advocates for student agency. It highlights the need for assessing student agency in the Anthropocene and introduces the influence of agency on the competencies under a new construct of science identity. However, the term “agency” still lacks a clear operational definition within science education. Consequently, few studies have demonstrated it in practice. Recent studies on “agency” have introduced the notion of critical science agency, which reflects how students extend their learning from science classrooms to engage with their school and community life. Beyond solving scientific problems, the focus is on addressing relevant socio-scientific issues, enhancing well-being, and influencing local government decisions. (5)Theoretical or Practical Insights/Contributions/Recommendations: This study examines the emphasis of contemporary scientific literacy within the historical development of science education and movements, incorporating reflections on current school-based science education to identify the future skills and competencies learners must develop to influence societal conditions through transformative approaches. These forward-looking reflections and the introduction of new frameworks in international assessments highlight the need for science education to shift from classroom activities to real-world actions, taking the first step towards building a future image as a science education goal to establish new-generation scientific literacy. Policymakers and educators must consider whether existing teaching methods are adequate to equip students with the competencies they need to take meaningful action on critical social issues, thereby advancing a vision of humanistic science in science education.
(1)研究目的:科學改變了世界文明發展的樣貌,科學教育則傳達了科學學習的過程,STS(Science, Technology, and Society)、STSE(Science, Technology, Society, andEnvironment)與STEM(Science, Technology, Engineering, and Mathematics)等倡議也在科學教育的推動下應運而生,過去20年來,教導學生科學知識與其相關的科學與社會性科學議題已然成為科學課室中的實踐方法。然而,科學教育社群對此做法持續有著不同的討論,特別是在面對全球性的社會生態危機與具高度不確定性的問題時,只是在課室中表達關心或提出具體的論點與主張,對於真實社會環境來說,無助於問題的解決。透過意識到問題的存在,並以實際行動解決問題,對社會現況產生變革性的影響,方能展現新一代科學素養所欲強調之能動性。因此,本研究透過國際學生能力評量計畫(Programme for International Student Assessment, PISA)架構的改變,以及科學教育對於「能動性」一詞的解釋與其相關文獻回顧,建立新一代科學素養的教育實踐方式。(2)主要理論或概念架構:我國新課綱自2019年施行以來,在終身學習的目標下,強調社會參與的面 向,期望在科學學習上能透過個人實踐並協助他人解決科學相關問題。源自18世紀晚期自歐洲發展的Bildung教育理念與20世紀末丹麥學者所提出的行動能力取徑,強調在瞭解議題產生的根本原因與影響後,透過行動策略的制定、願景的描繪與集體承諾的發展,以逐步的行動達成社會改變。(3)研究設計/方法/對象:本研究回顧重要的理論和實證研究,歸納出以Bildung為基礎、行動為媒介的新一代科學素養,並具象化PISA中能動性於科學素養所扮演的角色。(4)研究發現或結論:經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)發布之2025年PISA架構發生了重大改變,除合併原有科學能力的項目外,並新增第三項科學能力為「研究、評估與使用科學資訊以做出決定與行動」,強調在評估資訊後做出決策與採取行動的能力,並針對其所包含的環境科學能力做出說明。此架構除了因應永續發展目標的達成外,更是呼應《2030年教育和技能未來計畫》(Future of Education and Skill 2030 Project)所倡議的學生能動性,強調人類世中學生能動性評估之必要性,以及在新增科學認同感的構面下,能動性對其能力表現的影響。然而,科學教育領域中,對於「能動性」一詞缺乏明確的操作型定義,在教學的實踐上,也僅有極少數的研究。近年有明確使用能動性此一概念與詞彙的研究則提出了「批判性科學能動性」一詞,即由科學課室中的概念學習,延伸至班級、學校與社區生活的參與,除了解決科學性的問題外,更重要的是解決生活周遭的社會性科學議題,除了促進班級、學校與社區的生活福祉外,更可進一步影響當地行政機構的決策。(5)理論或實務創見/貢獻/建議:從科學教育與其倡議的發展脈絡中,檢視現行科學素養所強調之內涵,藉由科學教育社群針對現行學校科學教育所提出的反思,瞭解學習者所應具備之未來技能與素養,以變革之方式影響社會現況。基於這些反思的前瞻性研究與PISA新架構的提出,反映科學教育必須從科學課室的活動轉化為真實世界的行動,透過跨出建構未來圖像為科學教育目標的第一步,以建立新一代的科學素養。不論是政策制定者或教育實踐者,均應思考現有課程與教學方式如何培養學生面對問題和採取行動的能力,達成實現人文主義科學之教育理念。
王俊斌(2022)。能動性、能力統整與課程轉化—社會領域探究本位學習方法之研究。
  教育與多元文化研究,26,1-47。https://doi.org/10.53106/207802222022110026001
[Wang, C.-P. (2022). Agency, competencies integration, and curriculum transformation –
  Research on inquiry-based learning methods in social studies. Journal of Educational &
  Multicultural Research, 26, 1-47. https://doi.org/10.53106/207802222022110026001]
王瑞壎(2002)。OECD組織PISA評量對國小數學與科學教育之啟示。科學教育研究與
  發展季刊,27,39-55。
[Wang, J.-H. (2002). The reflection of mathematics and science education from the OECD/PISA.
  Research and Development in Science Education Quarterly, 27, 39-55.]
杜文苓、周晴萱(2018)。「戰鬥」與「保護」:高雄文府國小翻轉空污!。環境資訊
  中心電子報。https://e-info.org.tw/node/211132
[Tu, W.-L., & Chou, C.-H. (2018). Fighting and protecting: Wenfu elementary in Kaohsiung
  turns the tide on air pollution!. Environmental Information Center Newsletter. https://e-info.
  org.tw/node/211132]
姜添輝(2010)。影響結構與施為之間互動關係的媒介物:小學教師的專業認同與文化
  知覺分析。臺灣教育社會學研究,10(1),1-43。
[Chiang, T.-H. (2010). The medium for influencing the interactive relations between structure
  and agency: An analysis of primary school teachers’ professional identity and cultural
  awareness. Taiwan Journal of Sociology of Education, 10(1), 1-43.]
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─自
  然科學領域。https://cirn.moe.edu.tw/Upload/file/27888/82352.pdf
[Ministry of Education. (2018). Curriculum guidelines of 12-year basic education for elementary
  school, junior high and general senior high schools– The domain of natural science.
  https://cirn.moe.edu.tw/Upload/file/27888/82352.pdf]
教育部(2021)。十二年國民基本教育課程綱要─總綱。https://edu.law.moe.gov.tw/
  LawContent.aspx?id=GL002057
[Ministry of Education. (2021). Curriculum guidelines of 12-year basic education–
  General guidelines. https://cirn.moe.edu.tw/Upload/Website/11/WebContent/35949/
  RFile/35949/96198.pdf]
陳世文、楊文金、古智雄(2011)。從格致到科學—西方科學傳入中國對科學教育的
  啟示。科學教育月刊,343,2-17。https://doi.org/10.6216/SEM.201110_(343).0001
[Chen, S.-W., Yang, W.-G., & Ku, C.-H. (2011). The impacts and implications for the
  introduction of western science to China. Science Education Monthly, 343, 2-17. https://
  doi.org/10.6216/SEM.201110_(343).0001]
陳雅君、洪瑞兒、佘曉清、林煥祥(2016)。臺灣學生科學素養與科學教學者研究成果
  表現之發展趨勢探討。科學教育學刊,24(4),333-354。https://doi.org/10.6173/
  CJSE.2016.2404.01
[Chen, Y.-J., Hong, Z.-R., She, H.-C., & Lin, H.-S. (2016). Exploring the trend of Taiwan
  students’ scientific literacy and science educators’ research performance. Chinese Journal
  of Science Education, 24(4), 333-354. https://doi.org/10.6173/CJSE.2016.2404.01]
黃嘉莉、桑國元、葉碧欣(2020)。十二年國民基本教育課程改革中教師能動性之使
  動與制約因素:社會結構二元論觀點。課程與教學,23(1),61-92。https://doi.
  org/10.6384/CIQ.202001_23(1).0003
[Huang, J.-L., Sang, G.-Y., & Ye, B.-X. (2020). The enablement and constraint factors on teacher
  agency of 12-year basic education curriculum reform: A perspective of social structure
  duality. Curriculum & Instruction Quarterly, 23(1), 61-92. https://doi.org/10.6384/
  CIQ.202001_23(1).0003]
廖英凱、劉湘瑤(2024)。從傳道至參與:科學教育的民主脈動。科學教育月刊,474,
  19-34。
[Liao, Y.-K., & Liu, S.-Y. (2024). From preaching to participation: The democratic pulse of
  science education. Science Education Monthly, 474, 19-34.]
劉湘瑤(2022)。跨科議題的課程與教學。載於黃鴻博(編著),國小自然科學教材教
  法(頁129-144)。五南。
[Liu, S.-Y. (2022). Curriculum and instruction on interdisciplinary issues. In H. P. Huang (Ed.),
  Teaching materials and methods for elementary science (pp. 129-144). Wu-Nan Book.]
劉湘瑤、張俊彥(2018)。論自然科學課程綱要中的「素養」內涵。科學教育月刊,
  413,2-9。https://doi.org/10.6216/SEM.201810_(413).0001
[Liu, S.-Y., & Chang, C.-Y. (2018). Connotation of scientific literacy in science curriculum
  guidelines. Science Education Monthly, 413, 2-9. https://doi.org/10.6216/SEM.201810_
  (413).0001]
蔡文居(2024)。南大附小3校學生推廣肉品標章及國產鮮乳 寫信向立委陳情。自由時
  報。https://news.ltn.com.tw/news/Tainan/breakingnews/4618474
[Huang, W.-J. (2024). Students from NUTN-affiliated and two other elementary schools promote
  meat labeling and domestic fresh milk, petition legislators by letter. The Liberty Times.
  https://news.ltn.com.tw/news/Tainan/breakingnews/4618474]
蔡佩珈(2024)。小學生關切紐西蘭牛乳進口 發信請立委修法更名「長效乳」。工商時
  報。https://www.ctee.com.tw/news/20240508701184-431401
[Tsai, P.-J. (2024). Elementary School Students Concerned About Imported New Zealand Milk,
  Urge Legislators via Letter to Rename It as “Long-life Milk”. China Times Group. https://
  www.ctee.com.tw/news/20240508701184-431401]
蘇宏仁(1997)。美國科學教育的改革—回顧、前瞻與借鏡。科學教育月刊,200,
  2-11。
[Su, H.-J. (1997). The American science education reform: A retrospect, outlook and modeling.
  Science Education Monthly, 200, 2-11.]
Aikenhead, G. S. (1992). The integration of STS into science education. Theory into Practice,
  31(1), 27-35. https://doi.org/10.1080/00405849209543521
Alisat, S., & Riemer, M. (2015). The environmental action scale: Development and psychometric
  evaluation. Journal of Environmental Psychology, 43, 13-23. https://doi.org/10.1016/
  j.jenvp.2015.05.006
Anderson, C. W. (1999). Preface: Inscriptions and science learning. Journal of Research
  in Science Teaching, 36(9), 973-974. https://doi.org/10.1002/(SICI)1098-
  2736(199911)36:9<973::AID-TEA1>3.0.CO;2-C
Arnold, J., & Clarke, D. J. (2014). What is “agency”? Perspectives in science education research.
  International Journal of Science Education, 36(5), 735-754. https://doi.org/10.1080/
  09500693.2013.825066
Basu, S. J., Calabrese Barton, A., Clairmont, N., & Locke, D. (2009). Developing a framework
  for critical science agency through case study in a conceptual physics context. Cultural
  Studies of Science Education, 4(2), 345-371. https://doi.org/10.1007/s11422-008-9135-8
Basu, S. J., & Barton, A. C. (2010). A researcher-student-teacher model for democratic science
  pedagogy: Connections to community, shared authority, and critical science agency. Equity
  & Excellence in Education, 43(1), 72-87. https://doi.org/10.1080/10665680903489379
Bencze, L (2017). Science and technology education promoting wellbeing for individuals,
  societies and environments. Springer. https://doi.org/10.1007/978-3-319-55505-8
Bencze, L., & Carter, L. (2011). Globalizing students acting for the common good. Journal of
  Research in Science Teaching, 48(6), 648-669. https://doi.org/10.1002/tea.20419
Bennett, N., & Lemoine, J. (2014). What VUCA really means for you. Harvard Business Review,
  92(1/2). https://hbr.org/2014/01/what-vuca-really-means-for-you
Bingle, W. H., & Gaskell, P. J. (1994). Scientific literacy for decision making and the social
  construction of scientific knowledge. Science Education, 78(2), 185-201. https://doi.
  org/10.1002/sce.3730780206
Blandford, R. D., & Thorne, K. S. (2020). Post pandemic science and education. American
  Journal of Physics, 88, 518-520. https://doi.org/10.1119/10.0001390
Branchetti, L., Cutler, M., Laherto, A., Levrini, O., Palmgren, E. K., Tasquier, G., & Wilson,
  C. (2018). The I SEE project: An approach to futurize STEM education. Visions for
  Sustainability, 9, 10-26. https://doi.org/10.13135/2384-8677/2770
Bybee, R. W. (2008). Scientific literacy, environmental issues, and PISA 2006: The 2008 Paul
  F-Brandwein lecture. Journal of Science Education and Technology, 17(6), 566-585.
  https://doi.org/10.1007/s10956-008-9124-4
Chatterjee, I., Kunwar, J., & den Hond, F. (2019). Anthony Giddens and structuration theory. In S.
  Clegg & M. P. Cunha (Eds.), Management, organizations and contemporary social theory
  (pp. 60-79). Routledge.
Chen, S. Y., & Liu, S. Y. (2020). Developing students’ action competence for a sustainable
  future: A review of educational research. Sustainability, 12(4), 1374. https://doi.
  org/10.3390/su12041374
Chen, S. Y., & Liu, S. Y. (2024). From argumentation to real-world action: A way to realize
  scientific literacy. International Journal of Science Education. https://doi.org/10.1080/
  09500693.2024.2415727
Choi, K., Lee, H., Shin, N., Kim, S.-W., & Krajcik, J. (2011). Re-conceptualization of scientific
  literacy in South Korea for the 21st century. Journal of Research in Science Teaching,
  48(6), 670-697. https://doi.org/10.1002/tea.20424
Crutzen, P. (2002). Geology of mankind. Nature, 415, 23. https://doi.org/10.1038/415023a
DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary
  meanings and its relationship to science education reform. Journal of Research in Science
  Teaching, 37(6), 582-601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-
  TEA5>3.0.CO;2-L
Deta, U. A., Ayun, S. K., Laila, L., Prahani, B. K., & Suprapto, N. (2024). PISA science
  framework 2018 vs 2025 and its impact in physics education: Literature review.
  Momentum: Physics Education Journal, 8(1), 95-107. https://doi.org/10.21067/mpej.
  v8i1.9215
Elmose, S., & Roth, W. M. (2005). Allgemeinbildung: Readiness for living in risk society. Journal
  of Curriculum Studies, 37(1), 11-34. https://doi.org/10.1080/0022027041000229413
Emirbayer, M., & Mische, A. (1998). What is agency? American Journal of Sociology, 103(4),
  962-1023. https://doi.org/10.1086/231294
Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation
  within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209-237.
  https://doi.org/10.1002/tea.21076
Feinstein, N. (2011). Salvaging science literacy. Science Education, 95(1), 168-185. https://doi.
  org/10.1002/sce.20414
Feldman, H. R. (2020). A rhetorical perspective on youth environmental activism. Journal of
  Science Communication, 19(6), C07. https://doi.org/10.22323/2.19060307
Ferguson, T. (2022). Envisioning low-carbon futures: possibility and hope as part of climate
  change teacher education. Environmental Education Research, 28(8), 1191-1208. https://
  doi.org/10.1080/13504622.2022.2099532
Finnegan, W. (2023). Educating for hope and action competence: A study of secondary school
  students and teachers in England. Environmental Education Research, 29(11), 1617-1636.
  https://doi.org/10.1080/13504622.2022.2120963
Fischler, H. (2011). Didaktik– An appropriate framework for the professional work of science
  teachers? In D. Corrigan, J. Dillon, & R. Gunstone (Eds.), The professional knowledge
  base of science teaching (pp. 31-50). Springer. https://doi.org/10.1007/978-90-481-3927-
  9_3
Fisher, K., & Parsons, M. (2020). River co-governance and co-management in Aotearoa New
  Zealand: Enabling indigenous ways of knowing and being. Transnational Environmental
  Law, 9(3), 455-480. https://doi.org/10.1017/S204710252000028X
Fives, H., Huebner, W., Birnbaum, A. S., & Nicolich, M. (2014). Developing a measure of
  scientific literacy for middle school students. Science Education, 98(4), 549-580. https://
  doi.org/10.1002/sce.21115
Gandolfi, H. E. (2024). (Re)considering nature of science education in the face of socioscientific
  challenges and injustices. Science & Education. https://doi.org/10.1007/s11191-
  024-00536-w
Giddens, A. (1984). The constitution of society: Outline of the theory of structuration. University
  of California Press.
Gyles, S. A. (2024). Designing for critical science agency in a community-based science
  curriculum. Education Sciences, 14(8), 883. https://doi.org/10.3390/educsci14080883
Herman, B. C., Sadler, T. D., Zeidler, D. L., Newton, M. H. (2018). A socioscientific issues
  approach to environmental education. In G. Reis & J. Scott (Eds.), International
  perspectives on the theory and practice of environmental education: A reader (Vol 3, pp.
  145-161). Springer. https://doi.org/10.1007/978-3-319-67732-3_11
Herman, B. C., Zeidler, D. L., & Newton, M. (2020). Students’ emotive reasoning through
  place-based environmental socioscientific issues. Research in Science Education, 50, 2081-
  2109. https://doi.org/10.1007/s11165-018-9764-1
Hodson, D. (1994). Seeking directions for change: The personalisation and politicisation of
  science education. Curriculum Studies, 2, 71-98.
Hodson, D. (2003). Time for action: Science education for an alternative future. International
  Journal of Science Education, 25(6), 645-670. https://doi.org/10.1080/09500690305021
Hodson, D. (2010). Science education as a call to action. Canadian Journal of Science,
  Mathematics and Technology Education, 10(3), 197-206. https://doi.org/10.1080/14926156.
  2010.504478
Hodson, D. (2017). Foreword: The significance of STEPWISE for fostering life-long
  sociopolitical activism. In L. Bencze (Ed.), Science and technology education promoting
  wellbeing for individuals, societies and environments (pp. 3-18). Springer. https://doi.
  org/10.1007/978-3-319-55505-8_1
Hodson, D. (2021). Going beyond STS education: Building a curriculum for sociopolitical
  activism. Canadian Journal of Science, Mathematics and Technology Education, 20, 592-
  622. https://doi.org/10.1007/s42330-020-00114-6
Hurd, P. D. (1958). Science literacy: Its meaning for American schools. Educational Leadership,
  16(1), 13-16.
Iversen, E., & Jónsdóttir, G. (2019). “We did see the lapwing”– Practising environmental
  citizenship in upper-secondary science education. Environmental Education Research,
  25(3), 411-421. https://doi.org/10.1080/13504622.2018.1455075
Jensen, B. B. (2000). Health knowledge and health education in the democratic health-promoting
  school. Health Education, 100(4), 146-154. https://doi.org/10.1108/09654280010330900
Jensen, B. B. (2002). Knowledge, action and pro-environmental behaviour. Environmental
  Education Research, 8(3), 325-334. https://doi.org/10.1080/13504620220145474
Jensen, B. B. (2019). Environmental and health education viewed from an action-oriented
  perspective: A case from Denmark. In R. Alan (Ed.), Curriculum and environmental
  education (pp. 277-297). Routledge.
Jensen, B. B., & Schnack, K. (1997). The action competence approach in environmental
  education. Environmental Education Research, 3(2), 163-178. https://doi.org/10.1080/
  1350462970030205
Kuhn, D., Hemberger, L., & Khait, V. (2017). Argue with me: Argument as a path to developing
  students’ thinking and writing. Routledge.
Kyle, W. C. (1996). Editorial: The importance of investing in human resources. Journal of
  Research in Science Teaching, 33, 1-4.
Laherto, A., Levrini, O., & Erduran, S. (2023). Future-oriented science education for agency
  and sustainable development. Frontiers in Education, 8, 1-2. https://doi.org/10.3389/
  feduc.2023.1155507
Latour, B. (2014). Agency at the time of the Anthropocene. New Literary History, 45(1), 1-18.
  https://doi.org/10.1353/nlh.2014.0003
Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1),
  71-94. https://doi.org/10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-C
Lazarou, D., Erduran, S., & Sutherland, R. (2017). Argumentation in science education as
  an evolving concept: Following the object of activity. Learning, Culture and Social
  Interaction, 14, 51-66. https://doi.org/10.1016/j.lcsi.2017.05.003
Levrini, O., Tasquier, G., Barelli, E., Laherto, A., Palmgren, E., Branchetti, L., & Wilson, C.
  (2021). Recognition and operationalization of future scaffolding skills: Results from an
  empirical study of a teaching-learning module on climate change and futures thinking.
  Science Education, 105(2), 281-308. https://doi.org/10.1002/sce.21612
Liu, X. (2013). Expanding notions of scientific literacy: A reconceptualization of aims of
  science education in the knowledge society. In N. Mansour & R. Wegerif (Eds.), Science
  education for diversity: Theory and practice (pp. 23-39). Springer Dordrecht. https://doi.
  org/10.1007/978-94-007-4563-6_2
McNeill, K. L., & Vaughn, M. H. (2012). Urban high school students’ critical science agency:
  Conceptual understandings and environmental actions around climate change. Research in
  Science Education, 42(2), 373-399. https://doi.org/10.1007/s11165-010-9202-5
Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. King’s College
  London School of Education.
Mogensen, F., & Schnack, K. (2010). The action competence approach and the “new” discourses
  of education for sustainable development, competence and quality criteria. Environmental
  Education Research, 16(1), 59-74. https://doi.org/10.1080/13504620903504032
Next Generation Science Standard Lead States. (2013). Next Generation Science Standards: For
  states, by states. The National Academies Press.
Nichols, A. M. (2020). Being human: An ecocentric approach to climate ethics. In B. G. Henning
  & Z. Walsh (Eds.), Climate change ethics and the non-human world (pp. 133-149).
  Routledge.
Nordenbo, S. E. (2002). Bildung and the thinking of Bildung. Journal of Philosophy of
  Education, 36(3), 341-352. https://doi.org/10.1111/1467-9752.00280
Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to
  scientific literacy. Science Education, 87(2), 224-240. https://doi.org/10.1002/sce.10066
National Research Council. (2012). A framework for K-12 science education practices,
  crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New
  K-12 Science Education Standards. Board on Science Education, Division of Behavioral
  and Social Sciences and Education. The National Academies Press.
Organisation for Economic and Co-operation and Development. (2002). Definition and
  selection of competencies: Theoretical and conceptual foundations (DeSeCo). https://
  www.deseco.ch/bfs/deseco/en/index/01.parsys.70925.downloadList.59988.DownloadFile.
  tmp/2001annualreport.pdf
Organisation for Economic and Co-operation and Development. (2007). PISA 2006: Science
  competencies for tomorrow’s world (Vol. 1: Analysis). OECD Publishing. https://doi.
  org/10.1787/9789264040014-en
Organisation for Economic and Co-operation and Development. (2017). PISA 2015 assessment
  and analytical framework: Science, reading, mathematic, financial literacy and collaborative
  problem solving. OECD Publishing. https://doi.org/10.1787/9789264281820-en
Organisation for Economic and Co-operation and Development. (2018). The future of education
  and skills: Education 2030. OECD Publishing. https://doi.org/10.1787/54ac7020-en.
Organisation for Economic and Co-operation and Development. (2019a). OECD future of
  education and skills 2030: OECD learning compass 2030: A series of concept notes.
  https://www.oecd.org/content/dam/oecd/en/about/projects/edu/education-2040/1-1-
  learning-compass/OECD_Learning_Compass_2030_Concept_Note_Series.pdf
Organisation for Economic and Co-operation and Development. (2019b). Conceptual learning
  framework- Student agency for 2030. https://www.oecd.org/content/dam/oecd/en/about/
  projects/edu/education-2040/concept-notes/Student_Agency_for_2030_concept_note.pdf
Organisation for Economic and Co-operation and Development. (2023). PISA 2025 science
  framework (Draft). OECD Publishing.
Organisation for Economic and Co-operation and Development. (2024). PISA 2025 science
  framework. https://pisa-framework.oecd.org/science-2025/
Ojala, M. (2012). Hope and climate change: The importance of hope for environmental
  engagement among young people. Environmental Education Research, 18(5), 625-642.
  https://doi.org/10.1080/13504622.2011.637157
Olsson, D., Gericke, N., Sass, W., & Boeve-de Pauw, J. (2020). Self-perceived action
  competence for sustainability: The theoretical grounding and empirical validation of a
  novel research instrument. Environmental Education Research, 26(5), 742-760. https://doi.
  org/10.1080/13504622.2020.1736991
Osborne, J. (2023). Science, scientific literacy, and science education. In N. G. Lederman, D.
  L. Zeidler, & J. S. Lederman (Eds.), Handbook of research on science education (pp. 785-
  816). Routledge. https://doi.org/10.4324/9780367855758
Osborne, J., & Allchin, D. (2024). Science literacy in the twenty-first century: Informed trust and
  the competent outsider. International Journal of Science Education. https://doi.org/10.1080/
  09500693.2024.2331980
......